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Disasters are often precipitated by insufficient preventive care. We argue that there is a problem of prevention in that
this lack of care often stems from agents’ rational calculations. Positive experiences lead agents to underestimate the
risks of disasters; technological improvements and redundancies designed for safety induce agents to reduce their care.
Although lower care increases the chances of an accident, the number of redundancies can be adjusted to offset this.
However, the accident probability remains constant even as ostensible improvements in safety are made. Checklists
can be used to decrease the number of accidents.

A remarkable number of disasters and near-disasters, from the nuclear mishap at Three
Mile Island,2 to the Union Carbide plant tragedy in Bhopal,3 to the Challenger disaster,4 to
Hurricane Katrina5 have been preceded by a woefully inadequate level of preventative care,
making these adverse events seem not so much manifestations of poor luck as all but inevitable
occurrences. Indeed, the phrase “an accident waiting to happen” has become somewhat of a
cliché in postevent reporting. In a similar vein, a study by the Institute of Medicine (2000)
concluded that each year over 44,000 people die in U.S. hospitals from preventable medical
errors. In the banking industry, huge losses have resulted from a succession of rogue traders,
despite safeguards put into place with each episode. In this article, we argue that there is a true
problem of prevention in that many accidents are waiting to happen as the result of rational
calculations on the part of agents. We identify two factors that lead to dubious efforts in care:

(1) When objective risks of a disaster are poorly understood, positive experiences may lead
agents to underestimate these risks and underinvest in preventative care.

(2) Redundancies designed for safety may induce agents to lessen the care they take.

As a consequence of these reductions in care, a system may become less safe even as it
appears to be getting safer. If these effects are properly understood, this diminution in safety
can be offset by an appropriate choice of the number of redundancies. However, the existence
of these countervailing forces means that some attempts at safety improvement will have no
impact.
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2 In March 1979, there was a partial meltdown of the reactor core of the Three Mile Island Unit 2 nuclear power
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788 BENOÎT AND DUBRA

When the potential losses from an accident are large, agents take more care, making high-loss
systems less prone to accidents. The net effect on expected losses is ambiguous. If the number
of redundancies is adjusted optimally, expected damages remain constant.

We establish the above results using a model of accident prevention that captures the afore-
mentioned two factors. The model also incorporates the more familiar problems that occur
when agents fail to fully internalize the costs of an accident. On the other hand, the model ig-
nores other elements that may be germane. In particular, agents may have extraneous concerns,
be subject to group-reinforced biases (as in Bénabou, 2008), or simply make mistakes (Reason,
1990, studies various types of errors to which humans are prone). Although these are important
ingredients in explaining many accidents, we focus our attention on difficulties that remain even
when actors are well motivated and well trained to avoid mistakes.

Much of the writing on accidents comes from sociologists and psychologists. Vaughan (1996)
has written an in-depth study of the Challenger accident in which she faults the culture of
organizations in general and of NASA in particular; Perrow (1999) has written about the
danger of tightly-coupled complex systems, such as Three Mile Island. Downer (2011b) argues
that there is a category of epistemic accidents, which result from flawed theories and judgments.
Sagan (2004) and Downer (2011a) highlight some of the same issues that we discuss, among
other issues, but argue informally. We will return to this literature and to the relevant economics
literature at various points in the article.

Recent work has argued that the use of checklists may significantly reduce the likelihood of
accidents in health care and other industries (see Gawande, 2010, for an extended discussion)
and we apply our analysis to checklists.

1. THE MODEL

To fix our ideas, consider a machine with one critical part, which may become defective
and fail in any period with some given unknown probability. In each period, before running
the machine the part can be tested by several agents independently and, if found defective,
costlessly repaired. The test itself, however, is costly and imperfect—at higher costs the test is
more likely to detect a defect. In addition, an automated device may perform a test. We can
think of a defective part as an event, which turns into an accident if and only if it is not detected.
With this story in mind, consider the following model.

There are k ≥ 1 agents, an automated device, and nature. In each period t = 0, 1, 2 . . . ,

nature chooses y ∈ {e, n} (an event occurs or no event occurs) according to some probability
Pr(y = e) = θ̂ ∈ (0, 1). The parameter θ̂ is unknown, and every agent has the same beliefs about
θ̂. Given a probability distribution q over [0, 1], the subjective probability of an event is denoted
θq = ∫

θdq(θ).
In every period, each agent chooses an investment in care c ∈ S = [0, M], for some M ∈ R++.

The upper bound M could, for instance, represent the agent concentrating fully on the task at
hand. The choice of care is private information. If an agent invests c in care, with probability
p(c) he or she fails to detect (and fix) an event that has occurred. The function p is twice
continuously differentiable with p ′ < 0, p ′′ ≥ 0, and, when k = 1, the more restrictive p ′′ > 0.
The additional assumption p ′′ > 0 guarantees uniqueness of the equilibrium when k = 1 (see
Theorem 1).

There is also an automated device that may detect (and fix) an event. The automated device
fails with probability pa. An accident happens if and only if an event occurs and all agents and
the automated device fail to detect it. If an event is detected, all agents are informed of it. An
accident is so severe that it effectively ends the problem for the agents (although allowing the
agents to continue would not change our results).

Given a profile of effort choices c = (c1, . . . , ck) in the current period, and an expected
probability of an event θq, the (subjective) probability of an accident, that is, the probability of
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an undetected event, is θq paπ
k
i=1 p(ci).6 An accident causes a loss of D to an agent; the payoff in

any single period in which there is no accident is normalized to zero. Thus, the expected payoff
of agent j = 1, . . . , k in the current period is −θq paπ

k
i=1 p(ci)D − cj .

We focus on Markov strategies. Specifically, we define the state to be agents’ beliefs about
θ̂ and consider strategies that depend only upon agents’ current beliefs. Thus, we rule out an
(arbitrary) dependence on time. Given an absence of strategic dependence across time, in every
period agents seek to maximize their single period payoff.

We denote the above game by G(k, q, pa, D). We focus on symmetric equilibria, though we
briefly discuss asymmetric equilibria in Section 3.

THEOREM 1. The game G(k, q, pa, D) has a unique symmetric equilibrium in Markov
strategies.

PROOF. All proofs are in the appendix.

In the next two sections, we perform comparative statics that elucidate some important
aspects of the problem of prevention.

2. GOOD NEWS CAN BE BAD

Consider agents’ beliefs about the inherent safety of their environment. That is, consider their
beliefs about θ̂, the probability of an event. Scientific and other considerations yield a priori
estimates that must be continually updated in the light of experience. Some industries, such as
the airplane industry, have a long track record with both successes and failures, so that there is
a good understanding of the pertinent probabilities—even when new engines and airplanes are
developed, there is a concensus on the ways in which these need to be tested.7 Other enterprises,
such as nuclear power plants and the space shuttle, involve relatively new technologies with
limited experience. These spare histories make it very difficult to estimate the risks involved. In
particular, unbroken strings of success make it difficult to assess the probability of a failure. As
an example, the space shuttle Challenger had been preceded by 24 successful shuttle launches
without a failure, and estimates of a catastrophic failure ranged from 1 in 100 to 1 in 100,000
(Feynman, 1988).8 Similarly, before the incident at Three Mile Island, there had not been a
single accident at a commercial nuclear power plant, and the risks were poorly understood. The
likelihood of some natural disasters is also difficult to assess (especially so-called blockbuster
disasters; see Born and Viscusi, 2006).

Any reasonable updating process has the feature that the more time that passes without an
adverse incident, the lower the probability that is attached to one. This increasing optimism
leads to a declining investment in precautionary care and, potentially, to dangerously little care.
In this respect, good news can be bad. Investigations into the meltdown at Three Mile Island and
the space shuttle Challenger accident show that such optimistic underinvestment is precisely
what took place.

With regard to Three Mile Island, the Kemeny Commission (1979) concluded that:

After many years of operation of nuclear power plants, with no evidence that any member of the general
public has been hurt, the belief that nuclear power plants are sufficiently safe grew into a conviction.
One must recognize this to understand why many key steps that could have prevented the accident at
Three Mile Island were not taken. (p. 9)

6 We assume that the probabilities that different parts of the system fail are independent of each other. Downer
(2011a) contends that in some cases it is difficult to tell whether or not independence holds.

7 Nonetheless, Downer (2011b) argues that some innovations in airplane design, such as the introduction of new
composite material, may be poorly understood.

8 It should be noted, however, that the (management) estimate of 1 in 100,000 is a little hard to rationalize. Bénabou
(2008) argues that the estimate is a result of “groupthink.”
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With regard to the Challenger, as part of the investigating commission, Feynman (1988)
wrote:

We have also found that certification criteria used in flight readiness reviews often develop a gradually
decreasing strictness. The argument that the same risk was flown before without failure is often accepted
as an argument for the safety of accepting it again. (p. 220)

The Challenger flight is an excellent example: there are several references to previous flights; the
acceptance and success of these flights are taken as evidence of safety. (p. 223)

The slow shift toward a decreasing safety factor can be seen in many [areas]. (p. 230)

Vaughan (1996) has termed this steady decline in standards the “normalization of deviance,”
though she ascribes a different mechanism to this decline than we do. This reduction in care
has similarities to what Sagan (2004) terms agents overcompensating for increases in safety by
taking additional risks.

The following theorem formalizes this phenomenon. Given a prior q about θ, let qn denote the
Bayesian posterior beliefs following a period in which no event has occurred.9 Let c(k, θq, pa, D)
denote the individual level of care in the symmetric equilibrium of G(k, q, pa, D).

THEOREM 2. For any density q with support [0, 1], the probability of an event under beliefs
qn is strictly smaller than under beliefs q. That is, θqn ≡ ∫ 1

0 θqn(θ)dθ <
∫ 1

0 θq(θ)dθ = θq. The level
of care taken is also smaller. That is, c(k, θqn , pa, D) ≤ c(k, θq, pa, D), with strict inequality if
c(k, θq, pa, D) is interior.

Thus, a string of periods with no events leads to both a reduced belief in the probability of
an event and a decline in care. The net effect of these two changes on the subjective probability
of an accident depends on p/p ′, as detailed in Theorem 4 of the next section.

Although the decline in the level of care is interesting in and of itself, the question remains
as to whether or not it is proper; after all, it is the result of Bayesian updating. Absent an
objective measure of the probability of an accident, the question cannot be definitively answered.
Nonetheless, it is clear that both the Kemeny Commission and Feynman considered that (a) at
the time of the accident, agents were taking too little care, whereas (b) initially they were taking
the correct (or at least a reasonable) amount of care. Clearly, the pejorative term “deviance”
indicates that Vaughan also considers the decline in care to be inappropriate.

To understand this attitude, let us think of those who set the care standards as, collectively,
the principal, and those who actually take the care as the agents. We then have a principal–agent
problem. Implicit in the situation is the presumption that the principal cannot simply take the
care herself, and cannot adequately monitor the agents’ actions. In a standard principal–agent
problem, the “problem” arises from a divergence in the principal and the agent’s motivations.10

Here, we focus on a different problem—one that arises from a discrepancy in the beliefs of the
principal and the agent. We call this type of problem a belief-based agency problem.11

The basic idea in the present context is the following. The principal is an expert who conveys
her information/beliefs to the agents, but (inevitably) does so imperfectly. Although the princi-
pal may be able to convey her mean belief fairly accurately, she is unable to convey the breadth
and depth of the information on which this belief is based. As a result, the agents react more to
additional information than the principal deems optimal. Alternatively, the agents may believe
that there is more idiosyncratic variation across, say, power plants, than the principal does, so
that they overreact to the experience at their particular power plant.

9 Recall that the agent observes an event even if the event does not turn into an accident. Under an alternate
formulation, the agent only observes events that turn into accidents. Adopting this alternate formulation would add an
inferential complication.

10 See, for instance, MacDonald and Marx (2001) for a principal–agent approach to accident prevention.
11 Many public health campaigns surrounding lifestyle choices (such as the use of condoms, the decision to smoke,

dietary choices) fall into this category—the government seeks to change behavior by informing citizens of the risks
involved, but typically finds that individuals’ beliefs concerning these risks can only be influenced, not dictated.



ON THE PROBLEM OF PREVENTION 791

Formally, suppose the principal has belief q̃, whereas the agents have belief q. Both q̃ and q
are assumed to be represented by Beta distributions.12 The Beta assumption is fairly unre-
strictive, as any smooth unimodal density on [0, 1] can be well approximated by a Beta density
(Lee, 1989). Statisticians often posit a Beta distribution when studying the updating of Bernoulli
priors.

First, suppose that the distributions of the principal and the agents have the same mean,
but that the agents’ (common) distribution has a larger variance. Then, initially, the principal
and the agents agree upon the optimal amount of care. However, as we show below, following
any sequence of nonevents, the agents are always more optimistic than the principal. In fact,
we establish a more general result. To understand this result, first note that given two Beta
distributions B(a, b) and B(d, e) with the same mean, it can be shown that B(a, b) has a larger
variance than B(d, e) if and only if a < d and b < e. We generalize this condition and say that
the beliefs of an agent with prior B(a, b) are more disperse than those of a principal with prior
B(d, e) if a < d and b < e (thus, we have removed the requirement of equal means).

If the agents’ beliefs are more disperse than the principal’s, then initially the agents may be
either more or less optimistic, in terms of mean belief, than the principal. In either case, as the
following theorem indicates, following enough good news, the agents will be more optimistic
than the principal and underinvest relative to the principal’s beliefs.13 If the principal and agents
begin with the same mean belief, then the agents will begin underinvesting following the first
nonevent.

Let qnt be the (Bayesian) posterior of q following t observations of n, and recall that θqnt is
the estimated probability of an event based on the distribution qnt .

THEOREM 3. Suppose the beliefs of the agents, q, are distributed according to B(a, b) and the
beliefs of the principal, q̃, are distributed according to B(d, e). If the beliefs of the agent are more
disperse than those of the principal, then enough nonevents will make the agent more optimistic
than the principal. Specifically, for all

t > max
{

bd − ae
e − b

, 0
}

≡ T ∗

we have θqnt < θq̃nt . For all t > T ∗, c(k, θqnt , pa, D) ≤ c(k, θq̃nt , pa, D) and if c(k, θq̃nt , pa, D) is
interior, the inequality is strict .

In the extreme, the principal’s priors are so tight that she deems (essentially) no updating to
be appropriate. This seems to have been the case with Three Mile Island and the Space Shuttle.

When the potential damage from an adverse incident is very large, the optimal number of
accidents is close to zero. For this reason, nuclear reactors are built so that a string of nonevents
is the norm. Unfortunately, our results indicate that this success is, to some extent, self-defeating.
The Kemeny Commission reaches much the same conclusion about “overupdating” on the part
of power plant operators, writing in its report:

The Commission is convinced that this attitude [namely, the inference that nuclear plants are safe,
based on their positive record] must be changed to one that says nuclear power is by its very nature
potentially dangerous, and, therefore, one must continually question whether the safeguards already in
place are sufficient to prevent major accidents. (p. 9; emphasis added)

In effect, the commission is imploring nuclear operators to ignore favorable experience
pointing to the safety of nuclear plants. Some of Feynman’s recommendations can similarly be

12 The Beta distribution B(α + 1, β + 1) has a density on [0, 1] given by f (x) = xα(1 − x)β/
∫

uα(1 − u)βdu, and a
mean of β+1

α+β+2 . After an observation of an event, a prior B(α + 1, β + 1) is updated to B(α + 1, β + 2); after a nonevent
it becomes B(α + 2, β + 1).

13 In essence, the agent learns more from the positive signals than the principal does. The problem of which priors
are subject to more learning has not, as far as we know, been studied in general.
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interpreted as exhortations to downplay the significance of experience. However, it is difficult,
if not impossible, to prevent agents from engaging in their own updating. At least two factors
exacerbate this difficulty. The first one is the presence of idiosyncratic differences. Consider
airplane pilots. It is only natural, though perhaps unfortunate, for a particular pilot without an
adverse incident to think of himself or herself as particularly skilled and to be correspondingly
less wary than overall probabilities would recommend. Similarly, operators at nuclear power
plants may well feel that general experience at plants does not account for the specific conditions
at their particular plants. The second factor is the so-called availability heuristic (see Tversky
and Kahneman, 1973). It has been argued that when estimating probabilities, people tend to
place undue weight on factors that they can readily recall, chief among these being their personal
experience.14

Theorem 3 affords another interpretation beyond the principal–agent one. Some industries,
such as airplanes, are well understood not only because of their long experience but also because
they are built “bottom up.” In contrast with conventional aircraft, the space shuttle was built
with a “top down” approach (Feynman, 1988), making it difficult to obtain a tight estimate of
the safety of its novel technology. Let the priors q̃ correspond to well-established and time-
tested technologies and the priors q correspond to new or innovative technologies for which
less is known. With that reading, Theorem 3 tells us that innovative technologies are especially
susceptible to good news being bad.

We turn now to some related literature.
Our model points to the interaction between learning and investment. As is well understood,

for static problems in which the decision maker is an expected utility maximizer, it does not
matter whether agents know the probability of an accident or whether they merely have a
distribution of probabilities. When the problem of prevention is repeated over time, however,
learning and caretaking interact in nontrivial ways. Gollier (2002) has studied how the curvature
(and higher derivatives) of the utility function of the decision maker affect the optimal initial
level of care taken when the probability of the accident is unknown. In contrast, our main
concern is the study of the evolution of beliefs and how this evolution affects investment over
time.

One of the main features of our model, that strings of successes lead to lower care, is reminis-
cent of the search literature when the distribution that generates wage offers is unknown. This
literature has shown that as time goes by, a worker who keeps receiving bad offers becomes
more pessimistic about his prospects of finding a decent paying job. He then reduces his reser-
vation wage. The first papers to analyze the decline in reservation wages were, under different
assumptions, Rothschild (1974) and Burdett and Vishwanath (1984). Dubra (2004) studies the
consequences of this decline on the welfare of the decision maker.

3. REDUNDANCIES

A lifeguard must continually scan a pool or a beach for signs of swimmers in distress. Unfortu-
nately, even highly trained lifeguards may fail to maintain the necessary vigilance.15 Theorem 2
suggests that lifeguards who face few emergencies will be especially prone to lapses in vigilance.
This finding is consistent with experimental work in psychology which shows that subjects
engaged in vigilance tasks perform relatively poorly when the signal rate is low.16

Although the meandering mind of a lifeguard may prove lethal, the danger posed pales in
comparison with the potential harm from a nuclear or chemical plant. For this reason, these
plants are designed so that the failings of a single individual are not sufficient for a disaster to

14 Our results suggest a line of research into the optimal incentive schemes for belief-based agency problems. We do
not pursue such an investigation in the present article.

15 A 2001 Jeff Ellis & Associates study conducted at 500 swimming pools found that only 9% of lifeguards spotted a
submerged mannequin within 10 seconds (considered crucial), and only 43% within 30 seconds.

16 See Davies and Parasuraman (1981) for a survey.
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ensue. Consider the following description of an incident at a Union Carbide plant in Institute,
West Virginia (Perrow, 1999):

[Dangerous] aldicarb oxime . . . was transferred to a standby tank that was being pressed into service
because of some other problems. Unfortunately, the operators did not know that this tank had a heating
blanket and that it was set to come on as soon as it received product. Also unfortunately, they were
not examining the appropriate temperature gauges because they thought there was no need to, and
there may have been problems with these anyway because of the nature of the product in the tank. A
couple of warning systems failed to activate, and the tank blew . . . . A few other failures took place.
(p. 358)

Note the number of elements that fell into place to produce this accident: a standby tank was
being used and there was a heating blanket and it was set to come on and the operators did not
check the temperature gauges and warning systems failed and the tank blew and . . . still other
things happened. Even with all these failures, there was no loss of life, partly because weather
conditions were propitious.

Certainly, the large number of factors that must align in order to produce an accident at a
chemical plant contributes to its safety.17 More generally, consider a system with numerous
safety features, all of which must fail for a disaster to result. If the features might fail with
given independent probabilities, then the more features, the safer the system.18 With fully
automated features, the logic is unassailable. If humans are involved, however, features that
are ostensibly independent may manifest a strategic dependence, resulting in an ambiguous
relationship between reliability and the number of features.19

Returning to the Union Carbide case described above, the mere failure of the operators to
check the temperature gauges was a long way from producing an accident. However, why did
the operators fail to check the gauges?20 The immediate reason given is that “they thought there
was no need to,” but why did they feel no need to follow such an elementary safety precaution?
In this section, we suggest that at least part of the reason was that the operators knew that,
even with this lapse, an accident was unlikely precisely because so many factors had to go awry
in order to produce one. That is, the very redundancy features that enhanced the safety of
the plant also reduced the incentive of agents to take care, thus limiting the degree of safety
that could be achieved.21 An estimation of the safety of the system that neglects this strategic
slackening will badly miss the mark.

Although strategic reductions in care raise the probability of a disaster and increases in
the number of people and improvements in automation, in and of themselves, lower this
probability—the net effect is ambiguous. Importantly, under some reasonable conditions, the
overall effect of adding redundancy features is an increase in the probability of a disaster.
Theorem 4 summarizes these findings.

Recall that c(k, θq, pa, D) is the individual level of care in the symmetric equilibrium of
G(k, q, pa, D), and let P(k, θq, pa, D) be the equilibrium probability of an accident.

17 Perrow (1999), however, emphasizes the dynamic danger of tightly coupled complex systems, such as chemical
plants. When things start to go wrong in these systems, it is difficult for workers to understand exactly where the problem
lies and how to remedy it on the fly. Thus, whereas we take a static view in our modeling, Perrow is concerned with
dynamic difficulties. Nonetheless, he concedes that the number of failures that must take place for an accident to occur
in and of itself provides a crucial measure of safety.

18 Sagan (2004) points out that adding redundancies may be counterproductive if the failure of one part may itself
cause the failure of another. This possibility is absent from our model.

19 A somewhat related literature models situations of interdependent risks where the probability that one player
suffers a loss depends on the efforts of other players (for instance, the success of one airline’s anti-terrorism efforts is
affected by the actions of other airlines with connecting luggage). In this literature the actions of agents are assumed to
be contractible. For examples, see Heal and Kunreuther (2007) and Kunreuther and Heal (2003), and the references
therein.

20 Similar lapses in care have been noted at numerous other accident sites, including Three Mile Island.
21 Sagan (2004) and Downer (2011a) argue informally that redundancies may lead to decreasing care.
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THEOREM 4. In the unique symmetric equilibrium of G(k, q, pa, D),

(i) c is decreasing in k and increasing in pa, θq, and D—strictly if c is interior.
(ii) P is decreasing in D and may be increasing or decreasing in its other arguments.

Consider k′ > k, D′ > D and θq′ p ′
a > θq pa, and suppose the equilibrium is interior

(i.e., −p(0)k−1 p ′(0) > 1
θq paD

> −p(M)k−1 p ′(M)).

If p
p ′ is strictly increasing, then P(k′, θq, pa, D) > P(k, θq, pa, D) > P(k, θq′ , p ′

a, D)

and P(k, θq, pa, D)D > P(k, θq, pa, D′)D′;
if p

p ′ is strictly decreasing, then P(k′, θq, pa, D) < P(k, θq, pa, D) < P(k, θq′ , p ′
a, D)

and P(k, θq, pa, D)D < P(k, θq, pa, D′)D′.

An example for which p/p ′ is increasing is p(c) = (1 − ac)b, with a, b > 0; an example for
which it is decreasing is p(c) = a(1 + c)−γ, for a, γ > 0.

Theorem 4 tells us that a system that is inherently unsafe may have fewer accidents than a
relatively safe system.22 A moment’s thought makes this contrary finding clear. Suppose there is
a single agent who can either take no care or perfect care. That is, suppose S = {0, 1}, p(0) = 1,
p(1) = 0, and pa = 1. For small enough θq > 0, it is optimal for the agent to take no care,
resulting in an accident probability of θq, whereas for large enough θq it is optimal for the agent
to take perfect care, resulting in an accident probability of 0.

From Theorem 4, agents will take greater care when damages are greater so that the proba-
bility of an accident will be smaller in high-loss systems. The net effect on expected damages is
ambiguous, however. Note that the damage D in the theorem is, in fact, the agents’ perception
of the damage. If this is smaller than society’s perception, the agents will invest less in care than
the social optimum, even if this optimum fully incorporates the agents’ costs. The agents’ per-
ception of the damage might be low because the agents ignore the externalities of an accident,
among other reasons.

Although the statement of the theorem is in terms of whether p/p ′ is monotonically increasing
or decreasing, even if p/p ′ is not monotone over the entire domain, the comparative statics
of P between two equilibria, say c and c∗ > c, will be determined by whether p/p ′ increases
or decreases between c and c∗. As a result, if, for instance, p/p ′ is first increasing and then
decreasing over the domain of equilibrium care levels, then the accident-minimizing number of
redundancies will be at an intermediate level, as in Example 1 below.

Psychologists have long noted that people working in groups tend to expend less effort than
people working as individuals, with larger groups exhibiting more “social loafing.”23 This finding
corresponds to point (i) above. They have also observed that the introduction of automatic
devices leads to a decrease in human performance, which corresponds to point (i) above.24

Skitka et al. (2000) put subjects in simulated cockpits with imperfect automated monitoring
aids. They then compared the performance of one-person crews with the performance of two-
person crews. Although one might naively expect two-person crews to be much more likely
to detect system irregularities than one-person crews, they found essentially no difference in
detection rates, which is consistent with point (ii) (albeit in a relatively neutral way).

22 Viscusi (1984) argues that child safety caps on aspirin led to a decrease in adult care. Although he offers no
theoretical argument on the net safety impact, his empirical analysis suggests that decreases in care offset the benefit
of the safety cap.

23 Pschologists’ explanations for social loafing include arousal reduction, decreased evaluation potential, and a
matching of anticipated decreased effort on the part of others (see Karau and Williams, 1993, for a review).

24 Psychologists’ explanations include automation bias and automation induced complacency. Consistent with point
(ii), Skitka et al. (1999) find that experimental subjects are less likely to detect errors when aided by an automatic
system. On the other hand, Parasuraman et al. (1993) conduct an experiment in which they find that the variability in
the reliability of an automated system, but not the absolute value of this reliability, affects performance, a finding that
is not consistent with point (ii) (although the interpretation of this finding is confounded by the fact that subjects were
not given the reliability parameters).
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The following examples illustrate some interesting features of Theorem 4. In the first example,
the optimal number of caretakers assumes an intermediate value.

EXAMPLE 1. S = [0, 1] , θq paD = 40, p(c) = 1 − 5
4 c + 1

2 c2. For any k, the symmetric equi-
librium ck solves −θpaD(1 − 5

4 ck + 1
2 c2

k)k−1(ck − 5
4 ) = 1. The accident minimizing number of

people is given by

arg min
k

P(k, θq, pa, D) = 5.

In the second example, technological considerations restrict pa to the interval [ 1
2 , 1]. The

probability of an accident is minimized by choosing the least reliable automation within this set.

EXAMPLE 2. S = [0, 1], θqD > 2, p(c) = (1 − c)b, 1 ≤ b < k+1
k , pa ∈ [ 1

2 , 1]. For any pa, the

symmetric equilibrium is c = 1 − (bDpa)
1

1−bk .

arg min
pa∈[ 1

2 ,1]

P(k, θq, pa, D) = 1.

The third example shows that our model is formally a generalization of the Volunteer’s
Dilemma (Samuelson, 1984; Diekmann, 1985). In this dilemma, an accident can be prevented
if and only if at least one of k people takes a costly action.

EXAMPLE 3. Each individual’s payoff is given by:

Someone Else Acts No One Else Acts
Takes action −1 −1
No action 0 −D

In the symmetric mixed strategy equilibrium of this game, the probability of an event is
monotonically increasing in k. This result can be viewed as a special case of Example 2. To
see this, set b = 1, θq pa = 1. Then, a mixed strategy (α, 1 − α) in the Volunteer’s Dilemma
corresponds to a pure strategy c = α in Example 2. Because the equilibrium is interior and p

p ′ =
c − 1 is an increasing function, (ii) in Theorem 4 yields the Dilemma result that P is increasing
in k. Since Darley and Latané (1968) introduced the concept of “diffusion of responsibility”
into the psychology literature, this type of prediction has been tested often, with varying results
(see Goeree et al., 2005, and the references therein).

Although we focus on symmetric equilibria throughout this article, there may be asymmetric
equilibria as well. In the following example, which is analyzed in the appendix, we consider all
equilibria.

EXAMPLE 4. S = [0, 1], θ̄q paD = 90, p(c) = 1 − .99c. This game can be interpreted as a Vol-
unteer’s Dilemma in which a person who acts still fails to prevent an accident 1% of the time. As
the number of players increases, in the symmetric equilibrium of the game the probability of an
accident starts at 1% with one player, hits a minimum of slightly above 0.01% with two players,
and rises thereafter, approaching 1.12% in the limit. There are also asymmetric equilibria. All
of these involve some of the players choosing zero care and the rest of them choosing the same
positive level of care. With respect to all equilibria, the probability of an accident is minimized
when there are two or more players, two of the players choose the same level of care as in the
two-player symmetric equilibrium, and all other players choose zero care. Thus, when consid-
ering all equilibria, increasing the number of players beyond two does not strictly increase the
minimum probability of an accident, even though p

p ′ is strictly increasing. However, increasing
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the number of players beyond two does not reduce the probability of an accident either, and it
is wasteful if there is any opportunity cost to these players. Note also that once the presence of
asymmetric equilibria is recognized, a new danger arises: If agents attempt to play to different
asymmetric equilibria, they may end up in an out of equilibrium situation in which too many
agents are taking no care.

Our results are reminiscent of the “voluntary provision of public goods” literature. It has
long been known that the provision of public goods is subject to a free-rider problem, and since
Olson (1965) it has been argued that the severity of the problem increases with the number of
individuals in society. Several authors have produced examples where the ratio between the
optimal amount of a public good and the equilibrium amount of a voluntary provision game
increases with the number of players. Gaube (2001) gives general sufficient conditions for this
effect.25 As in Gaube, we give sufficient conditions for the problem of underprovision to be
exacerbated as k increases, but in addition we give sufficient conditions for the converse result
to hold; that is, we provide sufficient conditions under which the amount of the public good
provided is increasing in k. In several other respects, our model is not comparable with this
literature. In particular, in voluntary provision models, the public good is generally assumed to
be the sum of the contributions ci, whereas in our model it is 1 − paπ

k
i=1 p(ci), and we consider

what happens to the absolute level of the public good, not just the ratio to the optimal amount.

4. ACCIDENT MINIMIZATION

In this section, we analyze the maximal safety of the system.
Consider a principal who, by making investments, can exert some control over the probability

of an event, θq, and the quality of the automated device, pa. At the same time, she is free to
choose the number of agents/redundancies. Suppose the cost of the investments and the cost of
the agents are negligible, so that the principal seeks to minimize the probability of an accident.
That is, for any θq pa that can be feasibly attained, she chooses k to minimize P(k, θq, pa, D).

Under some conditions, the probability of an accident can be taken to 0 by hiring an infinite
number of agents. (One such condition is that agents can detect an accident even when taking
zero care (p(0) < 1)). However, when the number of agents goes to infinity, the assumptions
of the model become strained, as does the notion that the cost of hiring agents is negligible.
Although the theorems in this section are formally correct under these conditions, they are
more meaningful when these conditions do not hold and the optimal number of agents is finite.

We can think of θq pa as measuring (agents’ beliefs about) the technological safety of the
system. If θq pa ≈ 1, the system relies almost entirely on agents to prevent an accident. If there is
a single agent, he will take maximal care if the loss from an accident is important enough—more
precisely, if D > − 1

p ′(M) . As θq pa is lowered, the technological safety of the system improves.
If the system became safe enough, even a lone agent would find it optimal to take less than
maximal care, and, for an extremely safe system would go so far as to take zero care. However,
for the type of systems we are primarily interested in, the technological limitations are such
that and the damage is so large that a single agent would always take maximal care (formally,
θq paD > − 1

p ′(M) ). Put differently, we are mainly interested in situations in which, if agents
exert less than maximal effort, it is because of the redundancies that have been introduced to
compensate for the agents’ inherent fallibilities.26

For such situations, Theorem 5 below shows that when the number of agents is adjusted
optimally, increases in the technological safety of the system are exactly offset by reductions in
care. That is, the minimum accident probability remains constant as θq pa decreases, so that these
improvements do nothing for the safety of the system. These improvements may nonetheless

25 Cornes (1993) analyzes the case in which the public good is produced via a Constant Elasticity of Substitution
production function in which inputs are individual contributions. This case covers the standard case plus other interesting
cases. He does not analyze the effect of increasing the number of individuals.

26 We discuss what happens when a single agent would not take maximal care following Theorem 5 below.



ON THE PROBLEM OF PREVENTION 797

be valuable, as they enable a reduction in the number of agents (see Theorem 6 below) and a
concomitant cost savings. At the same time, Theorem 5 shows that the diminution in safety that
results from agents overupdating following good news (Theorem 3) can, in principle, be offset
by an appropriate change in the number of agents.

Although changes in the technological safety do not affect the maximal safety of the system,
changes in the damages, or the agents’ perception of the damages, do. Theorem 5 establishes
that systems with greater potential damages, D, have a lower minimum accident probability.
However, minimum expected damages are constant.

Recall that the equilibrium probability of an accident is given by P(k, θq, pa, D) =
θq pa p(c(k, θq, pa, ))k, where c(k, θq, pa, D) is the equilibrium probability of care. From the
proof of Theorem 1 in the appendix, we have that

c(k, θq, pa, D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if − θq pa p (0)k−1 p ′ (0) D ≤ 1

M if − θq pa p(M)k−1 p ′(M)D ≥ 1

c : θq pa p (c)k−1 = − 1
p ′ (c) D

otherwise

.(1)

We now take the number of agents k to be any positive real number, not just an integer, and
use (1) to define c(k, θq, pa, D). Restricting k to integer values, as we have done up to now, only
results in a more complicated statement of Theorem 5, with bounds on probability differences.

THEOREM 5. Suppose that D′ < D. For all − 1
p ′(M)D′ < θq pa, θq′ p ′

a, the minimum probability

of an accident is constant in θq and pa and decreasing in D. That is, infk P(k, θq, pa, D) =
infk P(k, θq′ , p ′

a, D) and infk P(k, θq, pa, D) ≤ infk P(k, θq, pa, D′). The minimum expected loss
is constant in D. That is, infk P(k, θq, pa, D)D = infk P(k, θq, pa, D′)D′.

Theorem 5 follows from the fact that, when the accident minimizing care that agents expend is
interior, the minimum expected loss is given by minc∈(0,M) − p

p ′ . As an illustration of the theorem,

consider Example 1 with D = 50. For all − 1
p ′(M)D = 0.08 < θq pa, infk P(k, θq, pa, D) = 0.012 .

Moving beyond the parameters of the theorem, for 0.03 ≤ θq pa ≤ 0.08, we still have
infk P(k, θq, pa, D) = 0.012 . Thus, for 97% of the possible parameter range, the minimal acci-
dent probability remains constant. As θq pa falls from 0.03 to 0.016, infk P(k, θq, pa, D) starts to
increase until it reaches 0.016 at θq pa = 0.016. Finally, as θq pa falls further, infk P(k, θq, pa, D)
also falls and, in fact, equals, θq pa. In this final range, agents take no care in equilibrium. This
pattern is quite general. In particular, decreases in θq pa reduce the minimal accident probability
below the constant value the minimum probability takes when θq pa > − 1

p ′(M)D , only if these
decreases are drastic enough to induce agents to take no care.

Staying with Example 1, for θq pa = 4
5 , as D increases from just above 5 to infinity, the

minimum probability of an accident falls continually from 0.12 to 0 in the limit. The expected
damage, however, remains constant at 0.6.

We now consider changes in the accident-minimizing number of agents. Theorem 2 indicates
that following periods of nonevents, agents will reduce their care, whereas Theorem 4 implies
that as the agents’ perception of the loss caused by an accident falls, agents again take less
care. From Theorem 5, the principal can offset these reductions by an appropriate choice of
redundancies. On the face of it, the principal could accomplish this offset either by increasing
the number of agents, in order to compensate for the fall in care, or reducing the number of
agents, in order to induce each agent to take more care. Theorem 6 below shows that, in the
present situation, the principal does the latter.

Given (θq, pa, D), let k(θq, pa, D) be the smallest number of agents that results in the minimal
accident probability, or infinity when hiring ever more agents keeps reducing the probability
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of an accident. Recall that θ̄qnt is the agents’ estimated probability of an event following t
observations of no event.

THEOREM 6. If D′ < D and − 1
p ′(M)D′ < θ̄qnt pa < 1, then k(θ̄qnt , pa, D′) ≤ k(θq, pa, D).

Returning to Example 1, with D = 50 and pa = 1, as θ̄qnt falls from just below 1 to 0.08, the
accident-minimizing number of agents falls from 5 to 2. Fixing θ̄q pa = 4

5 , as D falls from 500 to
50, the accident-minimizing number of agents falls from 8 to 5.

5. CHECKLISTS

Recent research in the health care industry suggests that the use of simple checklists may
significantly reduce morbidity, mortality, and medical errors. For instance, Haynes et al. (2009)
found that the implementation of a surgical safety checklist in eight hospitals reduced the death
rate from 1.5% to 0.8% and reduced in-patient complications from 11% to 7%. Checklists
are used in many other industries as well, most notably in aviation (see Gawande, 2010, for a
discussion).

It is not completely understood by what mechanisms checklists operate or what constitutes
the key elements of a successful checklist. Gawande (2010) suggests several possible benefits
of checklists, including that they serve as simple reminders not to forget important steps, that
they propose a better procedure than the one previously in place, and that they encourage
people to speak up about potential problems.27 In this section, we focus on a particular aspect
of checklists, namely, the redundancies found in many of them. Amongst other things, the
checklist used in Haynes et al. (2009) calls for the patient, surgeon, anesthesia professional, and
nurse all to confirm the patient’s identity. Kwaan et al. (2006) studies 16 surgical site-verification
protocols, and finds that the number of redundant checks ranges from 5 to 20, averaging 12. A
redundancy checklist calls for k different agents to carry out essentially the same check, in the
hope that at least one of the checks detects a problem if there is one. This is captured by our
model with 1 − p(ci) being the probability that check i is successful.

The adoption of a checklist—for instance, a series of oral verifications of the correct site
for surgery—does not by itself guarantee that much attention is being paid during a particular
step. Indeed, a well-known criticism of checklists is that steps may be carelessly addressed,
which is consistent with Theorem 4. Nonetheless, by explicitly attracting an agent’s attention
to these steps, a checklist reduces the marginal cost of care. In fact, taking little care itself may
require effort in the face of someone calling out a check. Thus, a surgeon who finds it too
time-consuming to personally confirm a patient’s identity absent a checklist may find that there
is little (extra) cost to doing so when a nurse calls out for confirmation as one step in a checklist.
This reduction in marginal cost will lead to extra care, as described in Theorem 7 below.

Let G(x) denote the game in which a redundancy checklist has reduced an agents’ cost of
supplying care c from the amount c to the amount f (c, x), where f is a family of functions
parametrized by x ∈ [0, 1], with the property that for all x′ > x and all c ∈ (0, M], (a) f 1(c; x) > 0
and f 11(c; x) ≥ 0, and (b) f 1(c; x′) ≤ f 1(c; x). Property (a) says that the cost of effort increases in
a convex way with effort, whereas (b) says that increases in x reduce the marginal cost of effort.
In the game G(x), agent j maximizes −θq paπ

k
i=1 p(ci)D − f (cj ; x).

27 With regard to the last suggestion, the “career concerns” model in the working version of this article, Benoı̂t and
Dubra (2007), indicates one reason why encouraging people to speak out may be necessary. Suppose that an agent in
a subordinate position, such as a nurse in surgery or a co-pilot on a plane, observes a possible problem that no one
else has noticed. Say the agent believes the probability that there is a problem to be 1

100 . For a critical problem, this
probability is high enough to warrant reporting. At the same time, however, the chances are overwhelming that the
agent’s concerns will prove unfounded. If the agent is worried about appearing to be incompetent he has an incentive
to not report his concerns. As a result, there will be underreporting of unlikely, but critical, possible problems. Many
checklist protocols alleviate this problem by taking a “time out” in which all agents are expressly encouraged to air any
concerns.
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THEOREM 7. There is a unique symmetric equilibrium of G(x) in Markov strategies. The
equilibrium effort c is increasing in x and the equilibrium probability of an accident P is decreasing
in x.

Thus, a checklist may be used to counter strategic slackening on the part of agents as well
as any reduced effort induced by the good news is bad effect. Although the traditional view is
that the downside of a long checklist is the time spent on the checks, Theorems 4, 5, and 6 show
that even absent time considerations a long checklist may not be desirable. A judicious choice
of the number of checks is needed to ensure that agents are not induced to behave carelessly.

A checklist may also serve a coordination function. As discussed in Example 4 of
Section 3, if there are multiple asymmetric equilibria and agents miscoordinate and attempt
to play to different ones, they may end up in an out of equilibrium situation in which very little
care is taken. A checklist may circumvent this problem by focusing the agents on a particular
equilibrium.

6. CONCLUSION

The world is a risky place, but how risky is a matter of some choice. Safeguards and backups
can be built into nuclear power plants, planes can be extensively tested and regularly inspected,
chemical facilities can have overlapping safety checks. Yet, though an ounce of prevention may
be worth a pound of cure, that ounce is often missing. Inadequate care can be the result of
miscalculations and misguided objectives. Thus, many analyses of the Challenger disaster have
emphasized the increasing pressure to launch brought about by the commercialization of the
Space Shuttle. We have shown, however, that lapses in care can also be the result of a rational
calculus by altruistic agents leading to imprevention instead of prevention.

APPENDIX

Proof of Theorem 7. Existence. Because players’ strategies depend only on the beliefs
about the probability of an event and effort does not affect these beliefs, in any given period
player j maximizes that period’s payoff, −θq paπ

k
i=1 p(ci)D − f (cj ; x).

If −θq pa p(M)k−1 p ′(M)D − f 1(M; x) ≥ 0, then ci = M for all i is a symmetric equilibrium.
Suppose that −θq pa p(M)k−1 p ′(M)D − f 1(M; x) < 0. If −θq pa p(0)k−1 p ′(0)D − f 1(0; x) ≤ 0,

then ci = 0 for all i is an equilibrium. If, on the contrary, −θq pa p(0)k−1 p ′(0)D − f 1(0; x) > 0,
then there is a c̃ ∈ (0, M] such that −θq pa p (̃c)k−1 p ′(̃c)D − f 1(̃c; x) = 0, and ci = c̃ for all i is an
equilibrium.

Uniqueness. We now show that there is exactly one symmetric equilibrium.
Suppose that c = 0 is a symmetric equilibrium. Then −θq pa p(0)k−1 p ′(0)D − f 1(0; x) ≤ 0. For

any c > 0, we have

−θq pa p(c)k−1 p ′(c)D − f 1(c; x) < −θq pa p(0)k−1 p ′(0)D − f 1(0; x) ≤ 0,

and ci = c is not a symmetric equilibrium.
Suppose that c = M is a symmetric equilibrium. Then −θq pa p(M)k−1 p ′(M)D ≥ f 1(M; x). For

all c < M, we have −θq pa p(c)k−1 p ′(c)D > f 1(c; x), so there is no other symmetric equilibrium.
Suppose that c = c is an interior symmetric equilibrium. Then −θq pa p(c)k−1 p ′(c)D = f 1(c; x).

Note that f ′′ ≥ 0, p ′ < 0, and p ′′ ≥ 0 or k = 1 and p ′′ > 0 ensures that there is no other c for
which −θq pa p(c)k−1 p ′(c)D = f 1(c; x), so there is no other symmetric equilibrium.

Comparatice statics. Let x′ > x. If cx = M is the equilibrium of G(x), then

0 ≤ −θq pa p(M)k−1 p ′(M)D − f 1(M; x) ≤ −θq pa p(M)k−1 p ′(M)D − f 1 (M; x′)

so that cx is also an equilibrium of G(x′).
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Suppose, by way of contradiction, that cx < M is the equilibrium of G(x) and cx′ < cx is the
equilibrium of G(x′). Because k > 1 and p ′′ ≥ 0 or k = 1 and p ′′ > 0, we have that

0 ≥ −θq pa p(cx′)k−1 p ′(cx′)D − f 1(cx′ ; x′) > −θq pa p(cx)k−1 p ′(cx)D − f 1 (cx; x′)

≥ −θq pa p(cx)k−1 p ′(cx)D − f 1(cx; x),

which is a contradiction.
Because P(x) = θq pa p(cx)k and cx is increasing in x, P(x) is decreasing. �

Proof of Theorem 1. Theorem 1 follows by setting f (c, x) = c in the above proof. �

Proof of Theorem 2. Claim 1. If two densities q′ and q are such that q′/q is strictly incre-
asing on their support [0, 1], then, for all x ∈ (0, 1), their cumulative distribution functions are
such that Q′(x) < Q(x). To see this, let x = sup{x : q′(x) ≤ q(x)}. Then, for all x ∈ (0, x) we
have q′(x) < q(x) and so Q′(x) < Q(x). For x > x, Q′(x) − Q(x) is increasing in x, because the
derivative is strictly positive, and therefore Q′(x) − Q(x) < Q′(1) − Q(1) = 0.

Claim 2. Qn(θ ≤ x) > Q(θ ≤ x) for all x ∈ (0, 1). From Bayes’ Rule, the density of the poste-
rior Qn is

qn(θ) = Pr(n | θ) Pr(θ)
Pr(n)

= (1 − θ)q(θ)∫ 1
0 (1 − z)q (z) dz

so that

q(θ)
qn(θ)

=
∫ 1

0 (1 − z)q (z) dz

1 − θ
,

which is strictly increasing in θ. By Claim 1, Qn(θ ≤ x) > Q(θ ≤ x).
Thus, q strictly first order stochastically dominates qn and

∫ 1
0 θqn(θ)dθ <

∫ 1
0 θq(θ)dθ.

Claim 3. c(k, θqn , pa, D) ≤ c(k, θq, pa, D). This follows from Theorem 4. �

Proof of Theorem 3. We first show that for all t > T ∗, we have θqnt < θq̃nt . Notice that
after t draws of n, the posteriors of the agent and the principal are B(a + t, b) and B(d + t, e),
respectively. We have,

θqnt < θq̃nt ⇔ b
a + b + t

<
e

d + e + t
⇔ t >

bd − ae
e − b

,

as needed . The claim about c(k, θqnt , pa, D) < c(k, θq̃nt , pa, D) follows by setting r = qnt and
q = q̃nt in Theorem 2. �

Proof of Theorem 4. Proof of (i). Suppose that k′ > k. If c(k, θq, pa, D) := c is
interior, then −θq pa p(c)k−1 p ′(c)D = 1. Therefore, −θq pa p(c)k′−1 p ′(c)D < 1, and be-
cause −θq pa p(·)k′−1 p ′(·)D is decreasing, we obtain c(k′, θq, pa, D) < c(k, θq, pa, D). If
c(k, θq, pa, D) = 0, then −θq pa p(0)k−1 p ′(0)D ≤ 1 and −θq pa p(0)k′−1 p ′(0)D < 1, so that
c(k′, θq, pa, D) = 0. If c(k, θq, pa, D) = M is an equilibrium, then necessarily c(k′, θq, pa, D) ≤
c(k, θq, pa, D).
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Suppose that p ′
a > pa. If c(k, θq, pa, D) := c is interior, then −θq pa p(c)k−1 p ′(c)D =

1. We have −θq p ′
a p(c)k−1 p ′(c)D > 1, and −θq p ′

a p(c)k−1 p ′(c)D decreasing in c im-
plies c(k, θq, p ′

a, D) > c(k, θq, pa, D). If c(k, θq, pa, D) = 0, then necessarily c(k, θq, p ′
a, D) ≥

c(k, θq, pa, D). If c(k, θq, pa, D) = M is the equilibrium, then −θq pa p(M)k−1 p ′(M)D ≥ 1, so
that −θq p ′

a p(M)k−1 p ′(M)D > 1 and c(k, θq, p ′
a, D) = M is the equilibrium . Similar arguments

apply to θq′ > θq and D′ > D.

Proof of (ii). That P is decreasing in D follows from c(k, θq, pa, D) increasing in D, p(·)
decreasing and P(k, θq, pa, D) = θq pa p(c(k, θq, pa, D))k.

If there is c ∈ S such that −p(0)k−1 p ′(0) > 1
θq paD

> −p(c)k−1 p ′(c), there exists c such that

−p(c)k−1 p ′(c) = 1
θq paD

holds; then c(k, θq, pa, D) = c is the unique symmetric equilibrium (by

Theorem 1).
Fix any k′ > k and let c(k′, θq, pa, D) := c′. We now show that P(k′, θq, pa, D) >

P(k, θq, pa, D) whenever p/p ′ is strictly increasing. From the proof of (i), c′ < c. Because c
is interior, the first order condition implies P(k, θq, pa, D) = − p(c)

p ′(c)D . Then, p(·)/p ′(·) strictly
increasing implies

P(k, θq, pa, D) = − p(c)
Dp ′(c)

< − p(c′)
Dp ′(c′)

≤ P(k′, θq, pa, D).

The proof for p(c′)
p ′(c′) >

p(c)
p ′(c) follows similarly.

Finally, for θq′ p ′
a > θq pa let c′′ := c(k, θq′ , p ′

a, D), so that by (i) c′′ > c. Repeating the steps
of the previous paragraph we obtain that P(k, θq, pa, D) > P(k, θq′ , p ′

a, D) when p/p ′ is strictly
increasing and the reverse when p/p ′ is decreasing. This concludes the proof. �

We now prove Theorems 5 and 6. Recall that throughout the article we assume p ′′ ≥ 0,
except that when k = 1 we impose p ′′ > 0 to guarantee uniqueness of the equilibrium. As this
assumption is ambiguous when k is endogenously chosen, for Theorems 5 and 6 we assume only
p ′′ ≥ 0 for all k. The condition − 1

p ′(M)D < θq pa in the statements of the theorems guarantees
uniqueness because choosing care level M is then the unique optimal thing for a lone agent to
do.

In order to prove these theorems, we first present a definition and series of lemmas. If
p(M) > 0 and − 1

p ′(M)D < θq pa, define kM by

− θq pa p(M)kM−1 p ′(M)D = 1.(A.1)

LEMMA 11. The function c(·, θq, pa, D) defined in Equation (1) is continuous for every
(θq, pa, D).

PROOF. It is easy to check that c(k, θq, pa, D) = arg minc∈[0,M](1 + θq pa p(c)k−1 p ′(c)D)2 and
that it is indeed a function. By the theorem of the maximum, c is upper hemicontinuous, and
because it is a function, it is continuous. �

LEMMA 12. If p(0) = 1, p(M) > 0, and − 1
p ′(M)D < θq pa, infk P(k, θq, pa, D) =

− supk
p(c(k,θq,pa,D))

p ′(c(k,θq,pa,D))D
.

PROOF. Note that − 1
p ′(M)D < θq pa implies that for every k, c(k, θq, pa, D) > 0. For all k̂ < kM

P(kM, θq, pa, D) = θq pa p(M)kM < θq pa p(M)k̂ = P(k̂, θq, pa, D).
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Hence, infk P(k, θq, pa, D) = infk≥kM P(k, θq, pa, D). From Equation (A.1), P(kM, θq, pa, D) =
− p(M)

p ′(M)D . For k > kM, c(k, θq, pa, D) ∈ (0, M), so that P(k, θq, pa, D) = − p(c(k,θq,pa,D))
p ′(c(k,θq,pa,D))D

. There-

fore, infk P(k, θq, pa, D) = − supk
p(c(k,θq,pa,D))

p ′(c(k,θq,pa,D))D
. �

LEMMA 13. Suppose p(0) = 1, p(M) > 0, and − 1
p ′(M)D < θq pa. Then for every c ∈ (0, M]

there is a unique k such that c(k, θq, pa, D) = c, and P(c(k, θq, pa, D)) = − p(c(k,θq,pa,D))
p ′(c(k,θq,pa,D))D

.

PROOF. For every c ∈ (0, M], for large enough k,

−p(c)k−1 p ′(c) <
1

θq paD
< −p ′(M) ≤ −p ′(c) = −p(c)1−1 p ′(c).

Thus, for all c ∈ (0, M], for some k, −p(c)k−1 p ′(c) = 1
θq paD

and c(k, θq, pa, D) = c.

Because p(c) > 0, for any k �= k, −p(c)k−1 p ′(c) �= −p(c)k−1 p ′(c) = 1
θq paD

, establishing
uniqueness. �

LEMMA 14. If p(0) = 1 and − 1
p ′(M)D < θq pa, then, for all k, P(k, θq, pa, D) ≥ − p(c(k,θq,pa,D))

p ′(c(k,θq,pa,D))D
.

PROOF. For all k such that ck = c(k, θq, pa, D) = 0, P(k, θq, pa, D) = θq pa p(0)k = θq pa >

− 1
p ′(M)D ≥ − 1

p ′(0)D = − p(0)
p ′(0)D .

For all k such that ck ∈ (0, M), P(k, θq, pa, D) = − p(ck)
p ′(ck)D .

For all k such that ck = M, we have that k ≤ kM and

P(k, θq, pa, D) = θq pa p(M)k ≥ θq pa p(M)kM = − p(M)
p ′(M)D

= − p(ck)
p ′(ck)D

. �

Proof of Theorem 5. Case 1. p(M) = 0. For k = 1, − 1
p ′(M)D < − 1

p ′(M)D′ < θq pa ensures

c(1, θq, pa, D) = M and P(k, θq, pa, D) = 0, and we are done.

Case 2. p(M) > 0, and p(0) < 1. For large enough k, c(k, θq, pa, D) = 0. Hence,
limk→∞ p(0)k = 0 so that infk P(k, θq, pa, D) = 0, and again we are done.

Case 3. p(M) > 0, and p(0) = 1. By Lemmas 12 and 13 we obtain

inf
k

P(k, θq, pa, D) = − sup
k

p(c(k, θq, pa, D))

p ′(c(k, θq, pa, D))D
= − sup

c

p(c)
p ′(c)D

,

which is constant in θq, pa and decreasing in D. Similarly, infk P(k, θq, pa, D′) = − supc
p(c)

p ′(c)D′ ,

which ensures infk P(k, θq, pa, D)D = − supc
p(c)
p ′(c) = infk P(k, θq, pa, D′)D′. �

In Lemma 15 below we show that

k(θq, pa, D) =

⎧⎪⎨⎪⎩
∞ if p(0) < 1 or

0 = arg maxc
p(c)
p ′(c)

mink{k ∈ arg mink≥1 P(k, θq, pa, D)} otherwise
(A.2)

is well defined and that k(θq, pa, D) is a minimizer of P(k, θq, pa, D).

LEMMA 15. Assume − 1
p ′(M)D < θq pa. If p(0) < 1 or 0 = arg maxc

p(c)
p ′(c) , infk P(k, θq, pa, D) =

limk→∞ P(k, θq, pa, D). Otherwise, there is a k∗ such that infk P(k, θq, pa, D) = P(k∗, θq, pa, D).
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PROOF. Case 1. If p(0) < 1, for all k, p(c(k, θq, pa, D)) < 1, and

0 ≤ inf
k

P(k, θq, pa, D) ≤ lim
k→∞

θq paDp(c(k, θq, pa, D))k = lim
k→∞

P(k, θq, pa, D) = 0.

Case 2. p(0) = 1 and 0 = arg maxc
p(c)
p ′(c) .

Because, for all k, 1 < −θq pa p ′(M)D < −θq pa p ′(0)D = −θq pa p(0)k−1 p ′(0)D, we have
c(k, θq, pa, D) > 0. Hence, for large enough k, we have 0 < c(k, θq, pa, D) < M, and
limk→∞ P(k, θq, pa, D) = limc→0 − p(c)

p ′(c)D . Because 0 = arg maxc
p(c)
p ′(c) , we have limc→0 − p(c)

p ′(c)D ≤
− p(c(k,θq,pa,D))

p ′(c(k,θq,pa,D))D
for all k. Hence, using Lemma 14,

lim
k→∞

P(k, θq, pa, D) ≤ − p(c(k, θq, pa, D))

p ′(c(k, θq, pa, D))D
≤ P(k, θq, pa, D)

for all k, which proves that limk→∞ P(k, θq, pa, D) = infk P(k, θq, pa, D).
Case 3. p(0) = 1 and ∃c∗ > 0, such that c∗ ∈ arg maxc

p(c)
p ′(c) .

If p(M) = 0, then, because c(1, θq, pa, D) = M, we have P(1, θq, pa, D) = 0 and setting k∗ = 1
yields the desired result.

If p(M) > 0, by Lemma 13 there is a k∗ such that c(k∗, θq, pa, D) = c∗. Using Lemmas 12 and
13

inf
k

P(k, θq, pa, D) = − sup
k

p(c(k, θq, pa, D))

p ′(c(k, θq, pa, D))D
= − sup

c

p(c)
p ′(c)D

= − p(c∗)
p ′(c∗)D

= P(k∗, θq, pa, D). �

Lemma 15 shows that k(θq, pa, D) is well defined. If neither p(0) < 1 or 0 = arg maxc
p(c)
p ′(c) ,

there is a k∗ that minimizes P(k, θq, pa, D), so that arg mink≥1 P(k, θq, pa, D) is well defined,
and because c(k, θq, pa, D) is continuous in k (Lemma 11) so is P(k, θq, pa, D), which ensures
that arg mink≥1 P(k, θq, pa, D) is closed.

Proof of Theorem 6. If p(0) < 1 or 0 = arg maxc
p(c)
p ′(c) , then, from Lemma 15,

k(θ̄qnt , pa, D′) = k(θq, pa, D) = ∞.
Assume therefore that p(0) = 1 and let c = maxc{c ∈ arg max p(c)

p ′(c) } > 0. If p(M) = 0, then

P(1, θq, pa, D) = P(1, θqnt , pa, D′) = 0, so k(θqnt , pa, D′) = k(θq, pa, D) = 1, and we are done,
so assume also p(M) > 0.

By Lemmas 12 and 13, there is a unique k such that c = c(k, θq, pa, D) and

inf
k

P(k, θq, pa, D) = − sup
c

p(c)
p ′(c)D

= − p(c)
p ′(c)D

= − p(c(k, θq, pa, D))

p ′(c(k, θq, pa, D))D
= P(k, θq, pa, D).

Similarly, there is a unique k
′
such that c = c(k

′
, θqnt , pa, D′) and

infk P(k, θqnt , pa, D′) = − supc
p(c)

p ′(c)D′ = − p(c)
p ′(c)D′ = − p(c(k

′
,θqnt ,pa,D′))

p ′(c(k
′
,θqnt ,pa,D′))D′

= P(k
′
, θqnt , pa, D′).

(A.3)



804 BENOÎT AND DUBRA

If c = M, for all k < k,

inf
k

P(k, θq, pa, D) = P(k, θq, pa, D) = θq pa p(M)k < θq pa p(M)k = P(k, θq, pa, D),

which shows that no k < k minimizes P(k, θq, pa, D), and hence k = k(θq, pa, D).
If c < M, for all k < k, because c is interior, c(k, θq, pa, D) > c(k, θq, pa, D) = c, and, because,

c = maxc{c ∈ arg max p(c)
p ′(c) },we have p(c(k,θq,pa,D))

p ′(c(k,θq,pa,D))
<

p(c)
p ′(c) . Lemma 14 then implies

P(k, θq, pa, D) ≥ − p(c(k, θq, pa, D))

p ′(c(k, θq, pa, D))D
> − p(c)

p ′(c)D
= P(k, θq, pa, D),

which shows that no k < k minimizes P(k, θq, pa, D), and hence k = k(θq, pa, D).
From Theorem 4

c
(
k(θq, pa, D), θqnt , pa, D′) ≤ c(k(θq, pa, D), θq, pa, D) = c = c(k, θqnt , pa, D′).

Applying Theorem 4 again, we have k
′ ≤ k(θq, pa, D). Finally, Equation (4) shows that k′

minimizes P(k, θqnt , pa, D′), so it implies that

k
(
θqnt , pa, D′) = min

k
{k ∈ arg min

k≥1
P(k, θqnt , pa, D′)} ≤ k

′ ≤ k(θq, pa, D). �

The following proposition relates to the game in Example 4, discussed in Section 3. In that
game, S = [0, 1], θ̄q paD = 90, p(c) = 1 − .99c.

PROPOSITION 16. Suppose (c1, . . . , ck) is an equilibrium and let I = {i : ci > 0}. Then |I| ≥ 1. If
|I| = 1, then ci = 1 for i ∈ I. If |I| > 1, then

ci =
[

1 −
(

10
9 × 99

) 1
|I|−1

]
100
99

for all i ∈ I. The equilibrium probability of accident is P = ( 10
9×99 )

|I|
|I|−1 .

PROOF. Given (c1, . . . , ck), player i’s payoff is u(ci) = −90(1 − 99
100 ci)

∏
j �=i(1 − 99

100 cj ) − ci

and u′(ci) = 90 × 99
100

∏
j �=i(1 − 99

100 cj ) − 1. If cj = 0 for all j �= i, then u′(ci) > 0, so that |I| ≥ 1.
If some player j chooses cj = 1, then for i �= j , u′(ci) < 0, so that all i �= j choose ci = 0. From

above, if all i �= j choose ci = 0, then i chooses cj = 1. Thus, if |I| = 1, then ci = 1 for i ∈ I.
Suppose that |I| > 1. From the previous paragraph, ci < 1 for all i ∈ I. Because 0 < ci < 1,

we have u′(ci) = 0. Hence
∏

j �=i p(cj ) = 10
9×99 for all i ∈ I. This implies that, for all h, i ∈ I,

p(ch) = p(ci) = ( 10
9×99 )

1
|I|−1 , and ch = ci = [1 − ( 10

9×99 )
1

|I|−1 ] 100
99 . �
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